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Abstract

We study coordination games under general type spaces. We characterize rationalizable actions in terms 
of the properties of the belief hierarchies and show that there is a unique rationalizable action played when-
ever there is approximate common certainty of rank beliefs, defined as the probability the players assign to 
their payoff parameters being higher than their opponents’. We argue that this is the driving force behind 
selection results for the specific type spaces in the global games literature.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Complete information games often have many equilibria. Even when they have a single equi-
librium, they often have many actions that are rationalizable, and are therefore consistent with 
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common certainty of rationality. The inability of theory to make a prediction is problematic for 
economic applications of game theory.

Carlsson and van Damme (1993) suggested a natural perturbation of complete information 
that gives rise to a unique rationalizable action for each player. They introduced the idea of 
“global games”—where any payoffs of the game are possible and each player observes the true 
payoffs of the game with a small amount of noise. They showed—for the case of two player 
two action games—that as the noise about payoffs becomes small, there is a unique equilibrium; 
moreover, the perturbation selects a particular equilibrium (the risk-dominant one) of the under-
lying game. This result has since been generalized in a number of directions and widely used in 
applications.1 When the global game approach can be applied to more general games, it can be 
used to derive unique predictions in settings where the underlying complete information game 
has multiple equilibria, making it possible to carry out comparative static and policy analysis. 
It has been informally argued that multiplicity partly relies on the unrealistic “complete infor-
mation” assumption, and the natural perturbation underlying global games captures the more 
realistic case.

However, the global game selection result uses a particular form of perturbation away from 
“complete information.” Complete information entails the assumption that a player is certain of 
the payoffs of the game, certain that other players are certain, and so on. Weinstein and Yildiz
(2007) consider more general perturbations, saying that a situation is close to a complete infor-
mation game if players are almost certain that payoffs are close to those complete information 
game payoffs, almost certain that other players are almost certain that payoffs are close to those 
payoffs, and so on. Formally, they consider closeness in the product topology on the universal 
belief space. They show that for any action which is rationalizable for a player in a complete 
information game, there exists a nearby type of that player in the product topology for whom 
this is the unique rationalizable action. Thus by considering a richer but also intuitive class 
of perturbations, they replicate the global game uniqueness result but reverse the selection re-
sult.

In this paper, we identify the driving force behind global game uniqueness and selection re-
sults. In particular, we do not want to take literally the (implicit) assumption in global games that 
there is common certainty among the players of a technology which generates (conditionally 
independent) noisy signals observed by the players. Rather, we want to argue that global game 
perturbations are a metaphor, or a convenient modeling device, for a more general intuitive class 
of relaxations of common certainty. We want to characterize and analyze the key property of that 
more general class, which must also be more restrictive than the product topology perturbations 
of Weinstein and Yildiz (2007).

Our baseline analysis is carried out for a two player, two action game. Each player must decide 
whether to “invest” or “not invest”. Payoffs are given by the following matrix:

invest not invest
invest x1, x2 x1 − 1, 0

not invest 0, x2 − 1 0, 0
(1)

1 Morris and Shin (1998) analyzed a global game with a continuum of players making binary choices, and this case 
has been studied in a number of later applications. See Morris and Shin (2003a) for an early survey of some theory 
and applications of global games. Frankel et al. (2003) study global game selection in general games with strategic 
complementarities.
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Each player i knows his own payoff parameter, or return to investment, xi but may not know 
the other player’s payoff parameter. There are strategic complementarities, because a player has 
a loss of 1 if the other player does not invest. If x1 and x2 are both in the interval [0,1], then 
there are multiple equilibria, both invest and both not invest, under complete information. In the 
symmetric case, with x1 = x2 = x, the risk-dominant equilibrium in this game is the equilibrium 
that has each player choose a best response to a 50/50 distribution over his opponent’s action. 
Thus both invest is the risk-dominant equilibrium if x > 1

2 .
If x1 and x2 are both in the interval [0,1], both actions remain rationalizable for player i if 

there is approximate common certainty of payoffs.2 This is a well known sufficient condition 
for multiple rationalizable actions, going back to Monderer and Samet (1989). But it is a strong 
condition.

A key concept to understand uniqueness in this setting is a player’s “rank belief”—that is, his 
belief about whether he has the higher payoff parameter (so he has rank 1) or the lower payoff 
parameter (so he has rank 2). A player has the uniform rank belief if he assigns probability 1

2
to each rank. If there is common certainty of uniform rank beliefs, then a player has a unique 
rationalizable action. In particular, action invest is uniquely rationalizable for a player if it is 
risk-dominant.

A rough argument for this is as follows. Let x∗ be the smallest payoff parameter such that 
invest is uniquely rationalizable whenever there is common certainty of uniform rank beliefs 
for a player with payoff parameter greater than or equal to x∗. If x∗ were strictly greater than 1

2 , 
a player with payoff parameter close to x∗ (and common certainty of uniform rank beliefs) would 
assign probability close to 1

2 to his opponent investing and would therefore have a strict incentive 
to invest. Thus we would have a contradiction. Thus x∗ must be less than or equal to 1

2 . This 
proves the result in the standard case with one dimensional types.

Under some additional continuity assumptions, essentially this argument goes though for gen-
eral situations—without reference to noisy signals or one dimensional type spaces—using the 
properties of the belief hierarchy at hand. This is how our result provides a primitive common 
belief foundation for global game selection. One of our main results will be a formalization of 
an appropriate weakening of the above sufficient condition: approximate common certainty of 
approximately uniform rank beliefs. And, more generally, the common belief foundations results 
focus attention on the properties of higher-order beliefs that matter for global game results rather 
than the conditionally independent noisy signal story that generates them.

Our characterization of rationalizability in terms of higher-order beliefs provides a conceptual 
foundation for global games approach, making explicit certain intuitions present in the exist-
ing literature, as well as extending the approach to richer and possibly more interesting type 
spaces. The applications in global games literature have been mainly confined to unidimensional 
type spaces with either an approximately uniform prior or a monotone supermodular structure 
(e.g. players’ signals have a common shock and an idiosyncratic shock—both distributed nor-
mally). In such type spaces it suffices to focus on equilibria with cutoff strategies. One can study 
those equilibria directly without needing our machinery here—although the rank beliefs clearly 
play an important role in those equilibria. Unfortunately, such a direct approach does not extend 
to higher-dimensional types spaces, where monotone equilibria would have higher-dimensional 
boundaries, and to the type spaces without monotone supermodular structure, so that monotone 

2 There is approximate common certainty of an event if both believe it with probability close to 1, both believe with 
probability close to 1 that both believe it with probability close to 1, and so on.
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equilibria may not even exist. One can still apply our sufficient conditions to those models and 
find out whether the risk-dominance gives the unique rationalizable solution. We illustrate this 
point in two examples modifying the standard normality assumptions. In one of them, we sim-
ply alter the distribution of variables to Pareto distributions (which often arise when there is 
a model uncertainty). In this example, monotonicity properties fail but our results still lead to 
a sharp dichotomy: the risk-dominant action is uniquely rationalizable when the idiosyncratic 
shock has a thinner tail, and both actions are rationalizable when the common shock has a thin-
ner tail. This sharply contrasts with the normal example, where one needs a peculiar rate of 
convergence, on which many existing applications are built. In the second example, we simply 
introduce uncertainty about variances, so that a player does not know how much the other player 
knows, resulting in a two-dimensional type space. We cannot solve for equilibria in this game, 
but we can easily extend the conclusions from the standard exercise to this case, by applying our 
results.

We present our results in the context of the simple strategic setting described above and focus-
ing on uniform rank beliefs. We do this in order to focus on the common belief foundations rather 
than the details of the strategic setting. We can then describe how our results can be mapped back 
to more general settings.

Our results extend to the case where there is approximate common certainty of the approxi-
mate rank belief p, where p �= 1

2 . The selected action will then depend on the rank belief p. In 
doing so, we provide common belief foundations for the results of Izmalkov and Yildiz (2010). 
While this case of p �= 1

2 has typically been motivated by non-common priors, we will show that 
it is possible to have approximate common certainty of the rank belief p for any p �= 1

2 , even 
under the common prior assumption.

We state our results for symmetric two player two action games, but they extend to sym-
metric many player two action games. The common belief characterization of rationalizability 
becomes more complex, because the relevant belief operators depend on beliefs about more than 
one event. However, the uniqueness and multiplicity results extend cleanly. Common certainty 
of rank beliefs corresponds in the N player case to always assigning probability 1

N
to exactly 

n players having higher payoff states, for each n = 0, 1, . . . , N − 1. Morris and Shin (2003a)
dubbed this the Laplacian assumption, and in this sense we are formalizing a known intuition 
about global game selection. This selection is key in the vast majority of applied work using 
global games.

However, the global game selection results reported in the paper rely on binary actions and 
symmetric payoffs; in particular, it is required for common certainty of approximately uniform 
rank beliefs to be the relevant sufficient condition for unique rationalizable actions. Higher-order 
belief foundations can be provided for many action and asymmetric payoff global game re-
sults, but they are qualitatively different from those provided for symmetric two action games 
here.

We present the basic definitions and preliminary results in Section 2. In Section 3, we present 
our characterization of rationalizability in terms of higher-order beliefs. In Section 4, we re-
port sufficient conditions for multiple rationalizable outcomes based on approximate common 
certainty of payoffs and for unique rationalizable outcomes based on approximate common cer-
tainty of approximately uniform rank beliefs. In Section 5, we report the proof of the main result 
as well as an example showing that a key technical assumption is not superfluous. In Section 6, 
we discuss extensions to more general strategic settings and the relation to the global games 
literature.
www.manaraa.com
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2. Model

There are two players, 1 and 2. Let T1 and T2 be the sets of types for players 1 and 2, re-
spectively. A mapping xi : Ti → R describes a payoff parameter of interest to player i, and a 
mapping πi : Ti → � 

(
Tj

)
describes player i’s beliefs about the other player. We assume that Ti

is endowed with a metrizable topology and Borel sigma-algebra, under which the mappings xi

and πi are measurable. We make a couple of minimal continuity assumptions: xi and πi are con-
tinuous,3 and the pre-image x−1

i ([a, b]) of every compact interval [a, b] is sequentially compact. 
This type space can be arbitrarily rich, and in particular can encode any beliefs and higher-order 
beliefs, and thus our results apply if the type space is the universal (private value) belief space of 
Mertens and Zamir (1985).4

We start by describing the belief and common belief operators, as in Monderer and Samet
(1989). The state space is T = T1 × T2. An event is a subset of T . An event is simple if E =
E1 × E2 where Ei ⊆ Ti . For our game theoretic analysis, we will be interested in simple events 
and we restrict attention to such events in the analysis that follows. For any such simple event E, 
we write E1 and E2 for the projections of E onto T1 and T2, respectively. Now, for probability pi , 
write Bpi

i (E) for the set of states where player i believes E with probability at least pi :

B
pi

i (E) = {(t1, t2) |ti ∈ Ei and πi

(
Ej |ti

)≥ pi

}
.

For a pair of probabilities (p1,p2), say that event E is (p1,p2)-believed if each player i be-
lieves event E with probability at least pi . Writing Bp1,p2∗ (E) for the set of states where E is 
(p1,p2)-believed, we have:

B
p1,p2∗ (E) = B

p1
1 (E) ∩ B

p2
2 (E) .

Say that there is common (p1,p2)-belief of event E if it is (p1,p2)-believed, it is (p1,p2)-
believed that it is (p1,p2)-believed, and so on. We write Cp1,p2 (E) for set of states at which E
is common (p1,p2)-belief. Thus

Cp1,p2 (E) = ∩
n≥1

[
B

p1,p2∗
]n

(E) .

An event is (p1,p2)-evident if it is (p1,p2)-believed whenever it is true. Generalizing a 
characterization of common knowledge by Aumann (1976), Monderer and Samet (1989) charac-
terizes common (p1,p2)-beliefs through (p1,p2)-evident events. This characterization is stated 
along with other useful facts next (see the proof of Lemma 2 below for a proof).

Lemma 1. (See Monderer and Samet (1989).) The following are true for all simple events E:

1. C(p1,p2) (E) ⊆ · · · ⊆
[
B

(p1,p2)∗
]n+1

(E) ⊆
[
B

(p1,p2)∗
]n

(E) ⊆ · · · ⊆ B
(p1,p2)∗ (E) ⊆ E.

3 We use the standard definition for the continuity of the beliefs: as ti,m → ti , πi

(·|ti,m) converges to πi (·|ti ) under 
the weak topology on the probability distributions (as in the “convergence in distribution”). That is, the expectation of 
any continuous and bounded function under πi

(·|ti,m) converges to its expectation under πi (·|ti ). Our results are also 
valid under an alternative notion of continuity: πi

(
T ′
j
|·
)

is continuous for every measurable subset T ′
j

⊆ Tj .
4 Mertens and Zamir (1985) constructed a space that encodes all beliefs and higher-order beliefs about a common state 

space. We maintain the assumption that the state space is a pair of payoff types of the players, where each player knows 
his own payoff type. It is a simple adaption to the classic construction to build in this restriction, see for example Heifetz 
and Neeman (2006). The classical construction assumes a compact state space. We need to allow the state space to be R2

but instead impose sequential compactness of types with payoffs within a compact interval.
www.manaraa.com
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2. C(p1,p2) (E) is the largest (p1,p2)-evident event F with F ⊆ E.
3. If E is closed, so are C(p1,p2) (E) and B(p1,p2)∗ (E).

In our formulation, we make the belief operators type dependent, and the above properties 
generalize immediately to this case. For any fi : Ti → R, we say that event E is fi -believed by 
type ti of player i if he believes it with probability at least fi (ti):

B
fi

i (E) = {(t1, t2) |ti ∈ Ei and πi

(
Ej |ti

)≥ fi (ti)
}
.

Clearly we can make richer statements about beliefs and higher-order beliefs in this language. 
We will continue to write Bpi

i (E) for the original pi -belief operator, where pi is now understood 
as the constant function of types taking the value pi . Note that we allow fi to take values below 
0 and above 1. This convention gives a special role to the events Bfi

i (∅) and Bfi

i (T ), since 
a player always believes an event with probability at least 0 and never believes an event with 
probability greater than 1. Thus

B
fi

i (∅) = {(t1, t2) |fi (ti) ≤ 0}
B

fi

i (T ) = {(t1, t2) |fi (ti) ≤ 1} .

These operators behave just like the type-independent ones. In particular, writing Bf1,f2∗ (E) for 
the set of states where E is (f1, f2)-believed, we have:

B
f1,f2∗ (E) = B

f1
1 (E) ∩ B

f2
2 (E) .

Say that there is common (f1, f2)-belief of event E if it is (f1, f2)-believed, it is (f1, f2)-believed 
that it is (f1, f2)-believed, and so on. We write Cf1,f2 (E) for set of states at which E is common 
(f1, f2)-belief:

Cf1,f2 (E) = ∩
n≥1

[
B

f1,f2∗
]n

(E)

An event is (f1, f2)-evident if it is (f1, f2)-believed whenever it is true. Lemma 1 generalizes to 
our case as follows.

Lemma 2. The following are true for all simple events E.

1. C(f1,f2) (E) ⊆ · · · ⊆
[
B

(f1,f2)∗
]n+1

(E) ⊆
[
B

(f1,f2)∗
]n

(E) ⊆ · · · ⊆ B
(f1,f2)∗ (E) ⊆ E.

2. C(f1,f2) (E) is the largest (f1, f2)-evident event F with F ⊆ E.
3. Assume f1 and f2 are continuous. If E is closed, so are C(f1,f2) (E) and B(f1,f2)∗ (E).

A proof of this Lemma in this context and notation—following standard arguments—is re-
ported in the Appendix.

In the baseline model, we consider the following action space and payoff function:

invest not invest
invest x1, x2 x1 − 1, 0

not invest 0, x2 − 1 0, 0

Note that any two-player two-action game with a pure-strategy Nash equilibrium is best-response 
equivalent to such a game, so that payoffs can be normalized into payoffs of this form without 
www.manaraa.com
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changing strategic behavior. Player i knows his own payoff parameter xi (ti) but does not nec-
essarily know the other player’s payoff parameter xj

(
tj
)
. Moreover, he gets a return xi (ti) if he 

invests but faces a penalty 1 if the other player does not invest. Hence, he only wants to invest if 
the probability he assigns to his opponent investing is at least 1 − xi (ti).

Remark 1. In our general setup and in the above payoff function, we have a “private value” 
environment, in which a player knows his payoff function at the interim stage.5 In contrast, 
a “common-value” environment is often used in global games literature by specifying the payoff 
function as

invest not invest
invest θ, θ θ − 1, 0

not invest 0, θ − 1 0, 0

where the payoff parameter θ is unknown. This environment is also included in our model by 
taking

xi (ti) = E [θ |ti] .
In both the common-value formulation and the private-value formulation with xi (ti) = E [θ |ti]
a player invests if and only if the probability he assigns to his opponent investing is at least 
1 − xi (ti). This best-response equivalence leads to strategic equivalence under many solution 
concepts, including rationalizability and Bayesian Nash equilibrium. We prefer the private value 
formulation because it leads to a more direct and clearer analysis. Also, in applications in which 
one studies the limit properties of the solution (as in the examples at the end of Section 4), the 
private value formulation avoids difficulties related to the convergence of expectations E [θ |ti].6

Throughout the paper, we will use rationalizability as the solution concept. We define ratio-
nalizability in the context of this game as follows (it corresponds to standard general definitions). 
Say that an action is (k + 1)th-level rationalizable if it is a best response to kth-level rationaliz-
able play of his opponent; and say that any action is 0th-level rationalizable. Write Rk

i for the set 
of types of player i for whom action invest is kth-level rationalizable and let R0

i = Ti .

3. Common-belief characterization of rationalizability

In this Section, we provide a useful characterization of rationalizability in terms of higher-
order beliefs about the payoffs. We start by carefully describing the set R1

i of types for whom 
invest is 1st-level rationalizable in terms of our type-dependent belief operators. On the one hand, 
for any type ti of player i, action invest is 1st-level rationalizable for ti if and only if xi (ti) ≥ 0; 
this is in response to the belief that his opponent invests with probability 1. On the other hand, 

5 See Morris and Shin (2005) for some theory and Argenziano (2008) for an application of private value global games.
6 An additional simplifying assumption here is that payoffs are additively separable between a component that depends 

on the opponent’s action and a component that depends on an unknown payoff state. This additive separability allows for 
a tighter description of the connection. Extensions are possible here also, but are messy and involve tedious continuity 
arguments. Also, like much of the applied literature, we focus on a game which is symmetric across players. However, 
global game results go through with asymmetric games. One can state analogous higher-order belief properties driving 
global game results (relating to translation invariance) but they are not as clean. These issues are discussed in Morris and 
Shin (2007).
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since player i always assigns probability 1 to T , he assigns probability at least 1 − xi (ti) to T if 
and only if xi (ti) ≥ 0. Thus,

R1
i = B

1−xi

i (T ) .

That is, the types for which invest is first-level rationalizable coincide with those in B1−xi

i (T ).
Now, action invest is 2nd-level rationalizable for type ti of player i if, in addition, he assigns 

probability at least 1 − xi (ti) to xj

(
tj
)≥ 0; thus

R2
i = B

1−xi

i

(
B1−x1,1−x2∗ (T )

)
.

More generally, action invest is (k + 1)th-level rationalizable for a type ti if he (1 − xi (ti))-
believes that T is kth-order (1 − x1,1 − x2)-believed:

Rk+1
i = B

1−xi

i

([
B1−x1,1−x2∗

]k
(T )

)
.

Action invest is rationalizable if it is kth level rationalizable for all k. Thus, action invest is 
rationalizable for both players exactly if T is common (1 − x1,1 − x2)-believed:

R∞ = C1−x1,1−x2 (T ) . (2)

By a symmetric argument, action not invest is rationalizable exactly if T is common (x1, x2)-
belief. The next result states this characterization; recall that C1−x1,1−x2 (T ) = C

1−x1,1−x2
1 (T )×

C
1−x1,1−x2
2 (T ).

Proposition 1. Action invest is rationalizable for type ti if and only if

ti ∈ C
1−x1,1−x2
i (T ) ;

action not invest is rationalizable for type ti if and only if

ti ∈ C
x1,x2
i (T ) .

It is useful to note that, since R1
i = B

1−xi

i (T ), C1−x1,1−x2 (T ) corresponds to a high common 
belief in the event that action invest is rational. Hence, each part of the proposition states that an 
action ai is rationalizable for a type ti if and only if ti assigns sufficiently high probability on 
a sufficiently high common belief in the event that ai is rational. That is, he finds it sufficiently 
likely that the action is rational, finds it sufficiently likely that the other player finds it sufficiently 
likely that the action is rational, . . . , ad infinitum. The key innovation that yields such a simple 
characterization is allowing the threshold for the sufficiency to depend on the payoffs of the types 
throughout.

4. Risk-dominant selection and multiplicity

Our focus in this paper is on when both actions are rationalizable for both players and when 
one action is uniquely rationalizable for both players—without loss of generality, we focus on 
uniqueness of action invest. Building on the characterization in the previous section, we present 
intuitive sufficient conditions for each case. Our first result characterizes the cases with multi-
plicity and uniqueness, as an immediate corollary to the characterization in the previous section.
www.manaraa.com
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Corollary 1. Both actions are rationalizable for a type ti if and only if

ti ∈ C
x1,x2
i (T ) ∩ C

1−x1,1−x2
i (T ) .

Invest is the uniquely rationalizable action for a type ti if and only if

ti ∈ C
1−x1,1−x2
i (T )\Cx1,x2

i (T ) .

The first part characterizes the cases with multiple rationalizable solutions. It states that both 
actions are rationalizable if and only if there is sufficiently high common belief that both actions 
are rational for both players. The second part characterizes the cases in which invest is the only 
rationalizable solution. It states that invest is uniquely rationalizable if and only if there is suf-
ficiently high common belief in rationality of invest (i.e., ti ∈ C

1−x1,1−x2
i (T )) but there is not 

sufficiently high common belief in rationality of not invest (i.e., ti /∈ C
x1,x2
i (T )). Once again, we 

obtain such simple and straightforward characterizations by making the threshold for sufficiency 
type-dependent.

While such characterizations are useful conceptually, they may not be of great practical use. 
In the rest of this Section, we provide simple tractable sufficient conditions for multiplicity and 
uniqueness. We start with a result for multiplicity, which states that both actions are rationalizable 
whenever there is approximate common certainty that payoffs support multiple strict equilibria.

Proposition 2. For any ε ∈ [0,1/2
]
, both actions are rationalizable on C1−ε,1−ε (Mε) where

Mε = {(t1, t2) |ε ≤ xi (ti) ≤ 1 − ε for both i } ;
indeed, there exist Bayesian Nash equilibria7 s∗ and s∗∗ such that

s∗ (t) = (invest, invest) and s∗∗ (t) = (not invest, not invest)
(
∀t ∈ C1−ε,1−ε (Mε)

)
.

Proof. We will construct an equilibrium s∗ as in the Proposition; construction of s∗∗ is iden-
tical. We construct an auxiliary game by altering the payoffs of some types as follows. We 
set xi (ti) = 2 whenever xi (ti) > 1 and set xi (ti) = −1 whenever xi (ti) < 0, so that domi-
nant actions remain dominant. For types in C1−ε,1−ε (Mε), we assign payoff 1 for invest and 
0 for not invest, making invest strictly dominant on C1−ε,1−ε (Mε). The auxiliary game—with 
bounded supermodular payoffs—satisfies the sufficient conditions of van Zandt (2010) and there-
fore has a Bayesian Nash equilibrium s∗, in which the types in C1−ε,1−ε (Mε) must play invest. 
But s∗ is also a Bayesian Nash equilibrium in the original game, as we show next. Indeed, 
for each type ti ∈ C

1−ε,1−ε
i (Mε), equilibrium action s∗

i (ti ) = invest is a best response to s∗−i

because xi (ti) ≥ ε (ti ∈ Mε by Lemma 1) and type ti assigns at least probability 1 − ε on 
C

1−ε,1−ε
j (Mε) (by Lemma 1) where s∗

j takes the value of invest throughout. All the remain-
ing types play a best response because their best responses are identical in the original and the 
auxiliary games. �

Note that, if the payoffs were known and as in Mε, then both (invest, invest) and (not invest, 
not invest) would have been (1 − ε)-dominant Nash equilibria. Proposition 2 then states that 

7 By a Bayesian Nash equilibrium, we mean a strategy profile s : T → {invest, not invest}2 such that si (ti ) is a best 
response to s−i for type ti for each ti .
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both actions are played in an equilibrium (and hence rationalizable) whenever there is common 
(1 − ε,1 − ε)-belief that both actions would have been (1 − ε)-dominant Nash equilibrium under 
complete information. This follows a key observation in the robustness literature, going back to 
Monderer and Samet (1989) which states that any p-dominant equilibrium of a game can be 
extended to a larger type space in which the original game is p-evident.

In an earlier working-paper version, we have used the standard techniques in the robustness 
literature to prove multiplicity of rationalizable actions.8 Such techniques can also be used to 
prove existence of multiple equilibria under additional technical conditions on the type space. 
Here, we prove existence of multiple equilibria without additional assumptions by using an 
equilibrium existence result for supermodular games. Note that, in our proof, we specify the 
equilibrium actions only on C1−ε,1−ε (Mε) and the dominance regions. The equilibrium strate-
gies can be highly complex outside of these regions in the general setup considered here. (In 
contrast, simple cutoff strategies suffice in the type spaces considered in global games litera-
ture.)

We next turn to establishing sufficient conditions under which there is a unique rationalizable 
action. Our key concept will be approximate uniformity of “rank beliefs”, which we now define. 
We will write ri (ti) for the probability that a player assigns to his payoff parameter being greater 
than or equal to that of the other player, and ri (ti) for the probability that it is strictly greater. We 
will refer to these expressions as “rank beliefs” as they reflect the player’s belief about his rank 
if the players are ordered by the payoff parameter. Formally, we define

ri (ti) = πi

({
tj |xj

(
tj
)≤ xi (ti)

} |ti
)
,

ri (ti) = πi

({
tj |xj

(
tj
)
< xi (ti)

} |ti
)
,

and

ri (ti) = (ri (ti) + ri (ti)
)
/2.

We refer to ri (ti), ri (ti), and ri (ti) as the upper rank belief, the lower rank belief and the rank 
belief of type ti , respectively. When the distribution of xj is atomless according to type ti , all 
these beliefs coincide: ri (ti) = ri (ti) = ri (ti). We define upper and lower rank beliefs separately 
in order to deal with point masses. Such point masses may arise, for example, under complete 
information.

Rank belief of a type ti is uniform if he finds it equally likely that either player’s value is 
higher. Formally, we say that rank belief of a type ti is ε-uniform if

1

2
− ε ≤ ri (ti) ≤ ri (ti) ≤ 1

2
+ ε.

We write URBε for the set of type profiles (t1, t2) where both players have ε-uniform rank be-
liefs:

URBε =
{
(t1, t2)

∣∣∣∣12 − ε ≤ ri (ti) ≤ ri (ti) ≤ 1

2
+ ε for each i

}
.

We sometimes informally say that rank beliefs are approximately uniform to mean that they are 
ε-uniform for some sufficiently small ε.

8 The technique involves setting the actions on C1−ε,1−ε (Mε) as desired and allowing the remaining types play a best 
response.
www.manaraa.com



836 S. Morris et al. / Journal of Economic Theory 163 (2016) 826–848
Our second concept is a strict version of risk-dominance. We say that action invest is ε-strictly 
risk-dominant for ti if

xi (ti) >
1

2
+ ε.

We write SRDε for the set of type profiles for which invest is ε-strictly risk-dominant for each 
player, so

SRDε =
{
(t1, t2)

∣∣∣∣xi (ti) >
1

2
+ ε for each i

}
.

We say that action invest is strictly risk-dominant if invest is ε-strictly risk-dominant for ε = 0.

Proposition 3. For any ε ≥ 0, assume that C1−ε,1−ε (URBε) is closed. Then, invest is the 
uniquely rationalizable action for both players if it is 2ε-strictly risk-dominant for both play-
ers and there is common (1 − ε)-belief of ε-uniform rank beliefs, i.e., if

(t1, t2) ∈ SRD2ε ∩ C1−ε,1−ε (URBε) .

Proposition 3 provides a useful sufficient condition for uniqueness, identifying common fea-
tures of the uniqueness results in the global games literature. It states that invest is uniquely 
rationalizable if it is strictly risk-dominant and there is approximate common certainty of ap-
proximately uniform rank beliefs. Observe that our result establishes this result without explicitly 
assuming some of the critical features of global games, such as existence of dominance regions. 
Moreover, it allows arbitrary type spaces with minimal continuity and compactness properties. 
In the next section, we will present the proof of our result and further discuss the assumption that 
the set C1−ε,1−ε (URBε) is closed. In the rest of this section, we will present some applications 
of our result. We start with presenting a weaker sufficient condition:

Corollary 2. For any ε > 0, let

DURBε =
{
(t1, t2)

∣∣∣∣xi (ti) ∈ [0,1] ⇒ 1

2
− ε ≤ ri (ti) ≤ ri (ti) ≤ 1

2
+ ε ∀i

}
be the event that each player has either ε-uniform beliefs or a dominant action. Assume that 
C1−ε,1−ε (DURBε) is closed. Then, invest is uniquely rationalizable for both players on SRD2ε ∩
C1−ε,1−ε (DURBε).

That is, invest is uniquely rationalizable whenever it is strictly risk-dominant for both and 
there is approximate common certainty that each player has either approximately uniform rank 
beliefs or a dominant action. Note that this sufficient condition merges the uniform rank beliefs 
and strict risk-dominance properties into a single condition. We simply drop the restriction on 
rank beliefs when a player has a dominant strategy. This will clearly not matter for strategic 
results. The corollary immediately follows from applying Proposition 3 to an augmented game 
in which the beliefs of the types with a dominant action is modified so that they have uniform 
rank beliefs (by adding new types as necessary).

Our results have immediate applications in low dimensional type spaces, which are often 
used in applications. Here, we will illustrate a couple of them. In the first two examples, the type 
spaces will be unidimensional, i.e.,
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T1 = T2 =R,

and in all of them the payoff functions will be linear, i.e.,

xi = ti + y,

where y ∈ R is the ex-ante mean of the payoffs.

Unidimensional linear-normal model In the previous framework, we specify

ti = θ + σei

θ = τη

where σ and τ positive real numbers and η, e1, and e2 are independent standard normal 
random variables. Here, each player’s payoff has a common component θ and an idiosyn-
cratic component ei . Using the standard formulas, one can compute that the rank belief of 
a player with type t is

rσ,τ (t) = 	

(√
σ 2(

σ 2 + 2τ 2
) (

σ 2 + τ 2
) t) ,

where 	 is the cumulative distribution function of standard normals; recall that player as-
signs probability rσ,τ (t) to the event that the other player’s type is lower than his own.9

What can we say about higher-order beliefs in this case? Observe that, as σ → 0 and 

τ → 0, 
√

σ 2(
σ 2+2τ 2

)(
σ 2+τ2

) converges to ∞ if σ

τ 2 → ∞ and converges to 0 if σ

τ 2 → 0. Thus 

if σ

τ 2 → ∞, we obtain approximate common certainty of payoffs and we have limit mul-
tiplicity. If σ

τ 2 → 0, we do have pointwise convergence to uniform rank beliefs, so that 

rσ,τ (t) → 1
2 for each t . But this convergence is not uniform in the tails, so that for any 

(σ, τ ), rσ,τ (t) → 1 as t → ∞ and rσ,τ (t) → 0 as t → −∞. Thus there is never approxi-
mate common certainty of approximately uniform rank beliefs.10 However, as established 
in Corollary 2, it is enough that all types without a dominant actions have approximately 
uniform rank beliefs. Since rσ,τ (t) approaches to 1/2 uniformly over 

[−ȳ,1 − ȳ
]
, when 

σ

τ 2 is small, this condition is satisfied, and risk dominance arises as the unique rationaliz-
able outcome.

Unidimensional linear model with fat-tailed distributions In the previous model assume in-
stead that the random variables η, e1, and e2 have regularly-varying tails where the idiosyn-
cratic terms e1 and e2 have tail index α and the common term η has tail index β . That 
is, the tail of ei is approximately proportional to e−α

i and the tail of η is approximately 
proportional to η−β . Such models arise often when the players face model uncertainty. 
When α > β , the idiosyncratic term has a thinner tail, and the player attributes all large 
deviations from the mean to a large common shock, assigning nearly probability 1/2 to 

9 This known formula for rank-beliefs has been extensively used in the existing literature, e.g., Morris and Shin (2001,
2003b).
10 For any ε < 1/4 and (σ, τ ), since limt→∞ rσ,τ (t) = 1, if the closed set C1−ε,1−ε (URBε) were not empty, then 
it would have a maximum t̄ . But since t̄ ∈ URBε , type t̄ would assign at most probability rσ,τ

(
t̄
) ≤ 1/2 + ε < 1 − ε, 

contradicting that t̄ ∈ C1−ε,1−ε (URBε).
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the event that the other player’s type is below his own. In that case, rσ,τ (t) is approxi-
mately 1/2 near the tail. Indeed, in an earlier version of this paper, we have shown that we 
have common knowledge of approximate uniform rank beliefs whenever α > β + 1 and 
σ/τ is sufficiently small. In that case, Proposition 3 establishes that whenever an action 
is strictly risk-dominant, it is the unique rationalizable action. Conversely, if β > α, then 
the common term has thinner tails, and the players attribute all large deviations from the 
mean to idiosyncratic shocks in their signals, believing that the other player’s type is near 
the ex-ante mean. Consequently, we have approximate common certainty of the payoffs, 
and Proposition 2 establishes multiple equilibrium outcomes whenever the payoffs sup-
port multiple strict equilibria under complete information. Thus we find that the fat-tailed 
model delivers sharper sufficient conditions for uniqueness than the well known normal 
model does.

Linear-normal model with precision uncertainty In the unidimensional linear normal model, 
assume that ei ∼ N

(
0, v2

i

)
where the variance vi ∈ [v, v̄

]
is privately known by player i, 

and v1 and v2 are strictly positive and independently distributed with cumulative distribu-
tion functions F1 and F2, respectively, for some v̄ > v > 0. Hence, T1 = T2 = R× [v, v̄

]
. 

Then,

rσ,τ (ti , vi) = E

⎡⎣	

⎛⎝√√√√ σ 2v2
i(

σ 2v2
j +

(
1 + v2

j /v
2
i

)
τ 2
)(

σ 2v2
i + τ 2

) ti
⎞⎠∣∣∣∣∣∣ ti , vi

⎤⎦ .

Observe that, as σ/τ 2 approaches 0, the expression in the square root goes to 0 for 
each (v1, v2), as in the case with known variances. Since 	 is bounded, this implies 
that rσ,τ (ti , vi) also goes to 	 (0) = 1/2, yielding approximately uniform rank beliefs 
for each (ti , vi). Once again, the convergence is not uniform, but this is not an issue 
since the variances v1 and v2 are bounded: for sufficiently small σ/τ 2, the condition in 
Corollary 2 is satisfied, and we have risk-dominance as the unique rationalizable out-
come.

Interestingly, when vi is not bounded, the rank beliefs can vary arbitrarily regardless of the 
size of σ/τ 2. Indeed,

lim
vi→∞ rσ,τ (ti , vi) = E

⎡⎢⎣	

⎛⎜⎝√√√√ 1(
σ 2v2

j + τ 2
) ti

⎞⎟⎠
∣∣∣∣∣∣∣ ti
⎤⎥⎦ .

Hence, when vi is large and σ and τ are small, rσ,τ (ti , vi) is approximately 1 for ti > 0 and 0
for ti < 0. Nevertheless, one can still obtain common belief of DURBε at any given type when 
σ/τ 2 is sufficiently small. To see this, take any ε > 0 and any ((t1, v1) , (t2, v2)). Set v̄i (ε) =
max

{
F−1

i (1 − ε) , vi

}
for each i, and note that the simple event Eε = R × (0, v̄1 (ε)] × R ×

(0, v̄2 (ε)] is (1 − ε,1 − ε)-evident. Moreover, as in the case of bounded variances, when σ/τ 2

is sufficiently small, we have Eε ⊆ DURBε . Thus, Eε ⊆ C(1−ε,1−ε) (DURBε).
The exercise in the unidimensional linear-normal model is a standard exercise in the global 

games literature (Morris and Shin, 2001, 2003b). In this case, one can explicitly compute rank 
beliefs and see how they evolve as the distributions shrink to zero at different rates. However, 
the other two models highlight the fact that these results are special. The unidimensional model 
with fat-tailed distributions identifies distinct properties that give uniqueness and multiplicity 
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depending on the tail properties of the distributions. In the model with precision uncertainty, one 
can easily compute the rank beliefs, but that does not help in analyzing the equilibria per se, 
because the type space is two dimensional and the event that players invest is a complex event 
depending on both payoff ti and variance vi (and we cannot compute it). Nevertheless, we can 
still apply our result and extend the conclusions from the standard exercise to this case.

5. Proof and a counterexample

In this Section, we will present the proof of Proposition 3. A key technical assumption in this 
Proposition is that common belief of uniform rank beliefs is a closed set. This closure assumption 
holds for free in three cases:

1. there is common knowledge that beliefs are approximately uniform, i.e., URBε = T ;
2. the upper and lower rank beliefs are continuous (by Lemma 1);
3. πi

(
Ej |ti

)
is continuous in ti for each Ej , and πi ({ti} |ti ) = 0 for each ti .11

We first establish by example that this assumption is not superfluous, illustrating difficulties 
one would face even under the common certainty of uniform rank beliefs.

Example 1. Consider the following symmetric type space. For some t̂ ∈ (0,1/2) and y = 1/2, 
set

Ti =R

πi (·|ti ) =
{

U
[
ti + (|ti | − t̂

)
/2, ti + (t̂ − |ti |

)
/2
]

if ti ∈ (−t̂ , t̂
)

δti otherwise

xi (ti) = ti + y,

where UX is the uniform distribution on X and δti assigns probability 1 on tj = ti .12 The range 
of tj is plotted as a function of ti in Fig. 1. This type space satisfies our general assumptions: 
the beliefs and payoffs are continuous functions of types, and x−1

i ([a, b]) is compact for every 
interval [a, b]. Nonetheless, the rank beliefs are discontinuous:

r̄i (ti) = 1 − ri (ti) =
{

1/2 if ti ∈ (−t̂ , t̂
)

1 otherwise.

Clearly, the rank beliefs are uniform on 
(−t̂ , t̂

)
:

URBε = (−t̂ , t̂
)2

(∀ε ∈ [0,1/2)) .

Moreover, URBε is an evident event: for any (t1, t2) ∈ (−t̂ , t̂
)2, each player assigns probability 1 

on 
(−t̂ , t̂

)2, as vividly demonstrated in Fig. 1. Therefore,

C1,1 (URBε) = URBε = (−t̂ , t̂
)2

.

11 In that case, the upper and lower rank beliefs coincide, and they are continuous. This assumption holds when πi (·|ti )
has a bounded density f (·|ti ) that is continuous in ti .
12 We could obtain a similar counterexample with a common prior by putting uniform distribution on the convex hull of {(−t̂ ,−t̂

)
,
(
t̂ , t̂
)
,
(−t̄ , t̄

)
,
(
t̄ ,−t̄

)}
for some small but positive t̄ and also on the diagonal outside of that set. We would 

consider URBε for ε = t̄/ 
(
2t̂
)
.
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Fig. 1. The range of tj as a function of ti for t̂ = 1/4.

That is, we have common certainty of uniform rank beliefs throughout 
(−t̂ , t̂

)2. Note however 
that 0 < xi (ti) < 1 on 

(−t̂ , t̂
)
. Hence, for ε = 0, Proposition 2 implies that we have multiplicity 

over C1,1 (URBε), contradicting the conclusion of Proposition 3.

Example 1 shows that even assuming common certainty of uniform rank beliefs would not 
be enough without the closure assumption. Example 1 also shows that we cannot dispense with 
our general technical assumption that the preimage x−1

i ([a, b]) of any compact interval [a, b] is 

compact. Indeed, one can take T = (−t̂ , t̂
)2, giving common certainty that beliefs are uniform, 

without altering the set of multiple solutions.
Note that on the boundary of the event URBε = (−t̂ , t̂

)2, we must have r̄i
(
t̂
) = 1 and 

ri

(
t̂
) = 0, so that t̂ /∈ URBε , rendering C1,1 (URBε) = URBε not closed. As we will show mo-

mentarily, this is what leads to multiplicity within C1,1 (URBε). Indeed, as we show below, when 
C1−ε,1−ε (URBε) is closed, the set of payoffs are unbounded on C1−ε,1−ε (URBε), violating the 
hypothesis of Proposition 2, and allowing contagion from the dominance regions included within 
C1−ε,1−ε (URBε).

Note that the sufficient condition for uniqueness in Proposition 3 is local, in that it only 
refers to the hierarchy of the beliefs of the type at hand, without making global assumptions 
about the type space. In contrast, the existing works on global games usually make structural 
assumptions on the entire type space, and often rely on the extremal equilibria. As illustrated 
in Example 1, a subset of types, such as 

(−t̂ , t̂
)2

, can form a belief-closed subspace where the 
hierarchies do not have any meaningful connection to the rest of the type space. Such hierar-
chies may not have substantial amount of information about the types outside the subspace. 
Therefore, our local conditions do not lead to global structural conditions in general. It turns 
out that when C1−ε,1−ε (URBε) is a topologically closed set, we can use rank beliefs to de-
duce enough structure within the set C1−ε,1−ε (URBε) to obtain the desired result, as we do 
next.

Fix a closed p-evident event E and define two cutoffs:

x∗ (E) = inf
{
z|z = xi (ti) ≥ ri (ti) for some i and ti ∈ Ei

}
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x∗∗ (E) = sup {z|z = xi (ti) ≤ ri (ti) for some i and ti ∈ Ei} .

Here, x∗ (E) is the lowest value for which any type of either player within E has that value 
and has a lower lower-rank belief; and x∗∗ (E) is the highest value for which any type of any 
player within E has that value and a higher upper-rank belief. The next Lemma establishes that 
invest cannot be rationalizable when the value is lower than x∗ (E), and not invest cannot be 
rationalizable when the value exceeds x∗∗ (E).

Lemma 3. Let E be a closed p-evident event. Then, invest is uniquely rationalizable for any 
ti ∈ Ei with xi (ti) > x∗∗ (E) + (1 − p) and not invest is uniquely rationalizable for any ti ∈ Ei

with xi (ti) < x∗ (E) − (1 − p).

Proof. We will show that invest is not rationalizable for any ti ∈ Ei with xi (ti) < x∗ (E) −
(1 − p). Let

x̂i ≡ inf
{
xi (ti) |ti ∈ R∞

i ∩ Ei

}
and assume without loss that

x̂1 ≤ x̂2. (3)

When R∞
1 ∩ E1 is empty, our conclusion is vacuously true because invest is not rationalizable 

anywhere on E. We will assume that R∞
1 ∩E1 is not empty and show that x∗ (E)− (1 − p) ≤ x̂1. 

Now, by definition, there exists a sequence 
(
t1,m

)
of types t1,m ∈ R∞

1 ∩ E1 such that x1
(
t1,m

) ∈[
x̂1, x̂1 + 1

]
for each m and x1

(
t1,m

)→ x̂1. Since x−1
1

([
x̂1, x̂1 + 1

])
is sequentially compact, 

there then exists a convergent subsequence with some limit t̂1. Since E is closed, t̂1 ∈ E1. Since 
x1 is continuous and x1

(
t1,m

)→ x̂1, we have

x̂1 = x1
(
t̂1
)
. (4)

Now, since T is closed and xi is continuous, by Lemma 2 and Proposition 1, R∞ is closed, and 
hence t̂1 remains in the closed set R∞

1 ∩ E1. In particular, t̂1 ∈ E1, and

x1
(
t̂1
)≥ 1 − π1

(
R∞

2 |t̂1
)
. (5)

Moreover, since E is p-evident, π1
(
R∞

2 \E2|t̂1
)≤ π1

(
T2\E2|t̂1

)≤ 1 − p. Hence,

π1
(
R∞

2 |t̂1
)≤ π1

(
R∞

2 ∩ E2|t̂1
)+ (1 − p) . (6)

Therefore,

x̂1 = x1
(
t̂1
)

, by (4)

≥ 1 − π1
(
R∞

2 |t̂1
)

, by (5)

≥ 1 − π1
(
R∞

2 ∩ E2|t̂1
)− (1 − p) , by (6)

≥ 1 − π1
({

t2 ∈ T2|x2 (t2) ≥ x̂2
} |t̂1

)− (1 − p) , by definition of x̂2

≥ 1 − π1
({

t2 ∈ T2|x2 (t2) ≥ x̂1
} |t̂1

)− (1 − p) , by (3)

= π1
({

t2 ∈ T2|x2 (t2) < x1
(
t̂1
)} |t̂1

)− (1 − p)

= r1

(
t̂1
)− (1 − p) ,
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showing that

x̂2 ≥ x̂1 ≥ x∗ (E) − (1 − p) .

A symmetric argument establishes that not invest is not rationalizable if xi (ti) > x∗∗ (E) +
(1 − p). �

When x∗∗ (E) = 1 (or x∗ (E) = 0), Lemma 3 is vacuous, stating that invest is uniquely ra-
tionalizable when it is dominant. When x∗∗ (E) < p, Lemma 3 establishes that invest remains 
uniquely rationalizable throughout the interval (x∗∗ (E) + 1 − p,1).

This is similar to the main result of Carlsson and van Damme (1993). In their result, if one 
can connect a type ti to a type t̄i at which invest is a dominant action, via a continuous path along 
which invest is either risk-dominant or dominant, then invest is uniquely rationalizable at ti . 
Here, as in Example 1, such an assumption may not be useful, and we do not explicitly make any 
such assumption. Nonetheless, when x∗∗ (E) < p, each type ti ∈ Ei with x∗∗ (E) < xi (ti) < 1
assigns a substantial probability (i.e. a probability greater than 1 − xi (ti)) on a set of types 
tj whose values are higher than that of ti and assign a substantial probability to yet another 
set of types with similar properties. In general, such connections through belief hierarchies do 
not necessarily lead to a contagion path. Indeed, as illustrated in Example 1, such a path can 
remain within the open set 

(−t̂ , t̂
)2, without leading to a dominance region. However, when E is 

closed and p > maxti∈Ei
r̄ (ti ), such a chain necessarily leads to types who assign a substantial 

probability on types for which invest is a dominant action.13 Such a chain forms a contagion 
path. Note that the types in the chain have type-dependent thresholds as in Proposition 1.

Proof of Proposition 3. Proposition 3 immediately follows from Lemma 3. Since
C1−ε,1−ε (URBε) ⊆ URBε , we clearly have x∗∗ (C1−ε,1−ε (URBε)

) ≤ 1/2 + ε. Hence, when-
ever (t1, t2) ∈ SRD2ε ∩ C1−ε,1−ε (URBε), we have xi (ti) > 1/2 + 2ε ≥ x∗∗ (C1−ε,1−ε (URBε)

)
+ ε. Since C1−ε,1−ε (URBε) is (1 − ε)-evident, Lemma 3 then implies that invest is uniquely 
rationalizable for both players at (t1, t2). �
6. Discussion: extensions and relation to the literature

6.1. Non-uniform rank beliefs

We have focused on the case of uniform rank beliefs, which is the leading case that arises in 
the literature. Our results continue to hold if we have common certainty that players have rank 
belief p, i.e., they assign probability p to having the higher rank. Our uniqueness results extend 
immediately, although the nature of the selection is then different.

Specifically, define RB
p
ε for the set of type profiles (t1, t2) where both players have ε-rank 

belief p:

RBp
ε = {(t1, t2) ∣∣p − ε ≤ ri (ti) ≤ ri (ti) ≤ p + ε for each i

}
.

Say that action invest is strictly p-dominant for ti if

xi (ti) > 1 − p.

13 Indeed, one can show that when Cp,p (URBε) is closed for some p > 1/2 + ε, the set x
(
Cp,p (URBε)

)
of payoff 

parameters for the types within Cp,p (URBε) is unbounded, inducing dominance regions within the subspace.
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Fig. 2. Rank beliefs for λ = 1 and λ = 10.

We write Dp for the set of type profiles for which invest is strictly p-dominant for each player, 
so

Dp = {(t1, t2) |xi (ti) > 1 − p for each i } .

Proposition 4. For any p, q, ε ∈ [0,1] with p + q ≥ 1 − 2ε, assume that C1−ε,1−ε
(
RBq

ε

)
is closed. Then, invest is the uniquely rationalizable action for both players if it is strictly 
p-dominant for both players and there is common (1 − ε)-belief of ε-rank belief q , i.e., if

(t1, t2) ∈ Dp ∩ C1−ε,1−ε
(
RBq

ε

)
.

This observation, suitably generalized to many players, is the driving force behind the results 
of Izmalkov and Yildiz (2010). The following example illustrates how approximate common 
certainty of non-uniform rank beliefs can arise.

Unidimensional linear model with exponential distributions Assume σ = τ = 1,

xi = ti + y

ti = θ + ei

where y < 0 and

θ, e1, e2
iid∼ Exp (λ) .

Observe that, conditional on ti , θ is uniformly distributed on [0, ti]; so is ei . Hence,

r (ti) = 1

ti

ti∫
0

(
1 − e−λ(ti−θ)

)
dθ = 1 − e−λti

ti

ti∫
0

eλθdθ = 1 − 1 − e−λti

λti
.

The rank beliefs are plotted in Fig. 2. As λ → ∞,
www.manaraa.com



844 S. Morris et al. / Journal of Economic Theory 163 (2016) 826–848
r (ti) → 1

uniformly on [−y, ∞). Thus, if tε = r−1 (1 − ε) and Eε = {t1|t1 ≥ tε
}× {t2|t2 ≥ tε

}
, the 

event Eε is (1 − ε,1 − ε)-evident.

The example satisfies the common prior assumption. One could build on the example to show 
that invest could be made the unique rationalizable action. It thus establishes that approximate 
common certainty of non-uniform rank beliefs is consistent with the unique selection of any 
rationalizable action in a type that is close to complete information in the product topology, 
illustrating a result of Weinstein and Yildiz (2007). However, approximate common certainty 
of non-uniform rank beliefs cannot arise with high ex ante probability under the common prior 
assumption, illustrating a result of Kajii and Morris (1997).

6.2. Many players

We focused on the case of two players. The extension of the results of this paper to N
players—maintaining the symmetry and separability of payoffs assumptions in this paper—is 
straightforward, and we describe this extension in this subsection.

Suppose that each player i has a payoff type xi , the payoff to not investing is 0, and the 
payoff to investing is xi − 1 + ψ (l) where l is the proportion of other players investing and 
ψ : [0,1] → [0,1] is increasing with ψ (0) = 0 and ψ (1) = 1. In the special case of two players, 
these payoffs reduce to those in the body of this paper.

We can give a common belief characterization of rationalizability in this setting, although the 
relevant belief operator is more complicated than in the two player case. For a fixed simple event 
E, agent i and integer n, we can consider derived events corresponding to the set of type profiles 
t−i of players other than i where tj ∈ Ej for exactly n out of those other players. We will be 
interested in the probability that player i assigns to such derived events and, more specifically, 
whether a weighted sum of such probabilities is above some type-dependent level. Thus we 
define generalized belief operators:

B
fi

i (E) =
{

t

∣∣∣∣∣ti ∈ Ei and
N−1∑
n=0

ψ

(
n

N − 1

)
πi

({
t−i

∣∣#{j |tj ∈ Ej

}= n
} |ti

)≥ fi (ti)

}
.

This is a generalization of the type-dependent belief operators that we introduced in the two 
player case. It is qualitatively more complicated, though, because it depends on the weighted sum 
of probabilities assigned to a set of events (rather than probabilities of one event). However, with 
these operators, we can generalize the tight characterization of rationalizability. For a vector of 
type dependent probability functions f = (f1, .., fN), we can now define f -belief and common 
f -belief operators as before,

B
f∗ (E) = ∩N

i=1B
fi

i (E) ,

Cf (E) = ∩∞
n=1

[
B

f∗
]n

(E) ,

and analogous fixed point characterizations will hold. Now Lemma 2 will continue to hold as 
stated for these modified operators, as will Proposition 1 giving a sufficient condition for a 
uniquely rationalizable action in symmetric games. It is also possible to give generalized be-
lief operator characterizations of rationalizable actions in more general games, see Morris and 
Shin (2007).
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While the tight characterization of rationalizability becomes more complicated when we move 
to many players, the sufficient conditions we give for multiplicity and uniqueness generalize 
straightforwardly. The approximate common certainty sufficient condition for multiplicity in
Proposition 2 is sufficient to show rationalizability of all strict equilibrium actions in general 
games, as originally shown by Monderer and Samet (1989).

For uniqueness sufficient conditions, a player’s rank belief now gives the probability that he 
assigns to his payoff type being ranked kth for each k, and we can define corresponding upper 
and lower rank beliefs. Thus

ri (k|ti ) = πi

(
#
{
tj |xj

(
tj
)≤ xi (ti)

}= k|ti
)
,

ri (k|ti ) = πi

(
#
{
tj |xj

(
tj
)
< xi (ti)

}= k|ti
)
.

We say that rank belief of a type ti is ε-uniform if

1

N
− ε ≤ ri (k|ti ) ≤ ri (k|ti ) ≤ 1

N
+ ε

for each k = 1, .., N . We write URBε for the set of type profiles t where both players have 
ε-uniform rank beliefs:

URBε =
{
t

∣∣∣∣ 1

N
− ε ≤ ri (n|ti ) ≤ ri (n|ti ) ≤ 1

N
+ ε for each i

}
.

We say that rank beliefs are approximately uniform if they are ε-uniform for some sufficiently 
small ε ≥ 0.

Morris and Shin (2003a) noted that the global game selection in this case was the “Laplacian 
action”, corresponding to a uniform belief over the proportion of opponents investing. Our second 
concept is a strict version of the Laplacian property. We say that action invest is ε-Laplacian for 
ti if

xi (ti) ≥ 1 − 1

N

N−1∑
j=0

ψ

(
j

N − 1

)
+ ε.

We write Lε for the set of type profiles for which invest is ε-strictly Laplacian for each player, 
so

Lε =
⎧⎨⎩t

∣∣∣∣∣∣xi (ti) ≥ 1 − 1

N

N−1∑
j=0

ψ

(
j

N − 1

)
+ ε for each i

⎫⎬⎭ .

Proposition 5. For any ε ≥ 0, assume that C1−ε,1−ε (URBε) is closed. Then, invest is the 
uniquely rationalizable action for all players if it is ε-Laplacian for all players and there is 
common (1 − ε)-belief of ε-uniform rank beliefs, i.e., if

t ∈ L2ε ∩ C1−ε (URBε) .

The generalized belief operators described above have been used by Oyama and Takahashi
(2013) to prove results about robustness to incomplete information games in the sense of Kajii 
and Morris (1997). There is a continuum of players in much of the global games literature. 
Extending our analysis, as stated, to a continuum of players would raise new technical issues, e.g., 
concerning the metrizability of the type space. Two papers that do use explicit statements about 
higher-order beliefs to give sufficient conditions for uniquely rationalizable actions in games
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with a continuum of players are Morris and Shin (2012) and Morris (2014). However, they are 
established in much more restrictive settings than this paper.

6.3. Global games literature

Let us briefly summarize how the results described in this paper relate to the existing global 
games literature.

The classical exercise in the global games literature initiated by Carlsson and van Damme
(1993) is to consider what happens if we fix a prior over payoff relevant states and let the size 
of the noise in players’ conditionally independent signals of the state converge to zero. A key 
step in such arguments (e.g., in Carlsson and van Damme (1993) and Frankel et al. (2003)) is 
the assumption that the prior distribution is smooth, which ensures that conditional probabili-
ties converge uniformly, or uniformly over a compact interval. In the symmetric case, globally 
uniform convergence of conditional probabilities gives approximate common certainty of ap-
proximately uniform rank beliefs. However, as highlighted by Lemma 2, it is enough to have 
common certainty of rank beliefs on a compact interval including states where players actions 
are undominated. In this sense, we highlight the properties of higher-order beliefs that drive 
results in the symmetric case.

Our results generalize those in the existing literature because we do not exploit monotonic-
ity properties of the type space. An order structure on types is used in the existing literature. 
In the analysis of Carlsson and van Damme (1993), Morris and Shin (2003a) and Frankel 
et al. (2003), there is monotonicity with respect to types in the limit (as noise goes to zero) 
and continuity arguments are used to provide results in the (not necessarily) monotonic type 
space away from the limit. In the normal models of Morris and Shin (2001, 2003b), mono-
tonicity away from the limit is implied by the normality. In highlighting the connection be-
tween general supermodular games and global games, van Zandt and Vives (2007) impose 
monotonicity away from the limit in general games. Mathevet (2010) imposes a stochastic 
dominance property even in the limit to prove global game uniqueness results via a contrac-
tion argument. By contrast, results in this paper are proved without any order structure on 
types.

Appendix A. Omitted proofs

Proof of Lemma 2. (Part 1) If (t1, t2) ∈ B
(f1,f2)∗ (E), then, for each i, we have ti ∈ B

(f1,f2)
i (E), 

implying ti ∈ Ei . Therefore, B(f1,f2)∗ (E) ⊆ E. By iterative application of this, one gets the state-
ment in Part 1.

(Part 2) For any (f1, f2)-evident F ⊆ E, we have

F ⊆ C(f1,f2) (F ) ⊆ C(f1,f2) (E) ,

where the first equality is by definition of (f1, f2)-evident, and the second inequality is by mono-
tonicity of probability distributions.14 From Part 1, it then suffices to show that C(f1,f2) (E) is 
(f1, f2)-evident. To this end, take any (t1, t2) ∈ C(f1,f2) (E). For each n and i, since (t1, t2) ∈
C(f1,f2) (E) ⊆

[
B

(f1,f2)∗
]n+1

(E), we have

14 Indeed, if (t1, t2) ∈ B
fi (F ), then ti ∈ Fi ⊆ Ei and πi

(
Ej |ti

)≥ πi

(
Fj |ti

)≥ fi (ti ), showing that (t1, t2) ∈ B
fi (E).
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πi

([
B

(f1,f2)∗
]n
j
(E) |ti

)
≥ fi (ti) ,

where 
[
B

(f1,f2)∗
]n
j
(E) is the projection of 

[
B

(f1,f2)∗
]n

(E) to Tj . But, by definition and part 1, [
B

(f1,f2)∗
]n
j
(E) is a decreasing sequence (indexed by n) converging to C(f1,f2)

j (E), the projec-

tion of C(f1,f2) (E) to Tj . Therefore,

πi

(
C

(f1,f2)
j (E) |ti

)
= lim

n
πi

([
B

(f1,f2)∗
]n
j
|ti
)

≥ fi (ti) ,

showing that (t1, t2) ∈ B
fi

i

(
C(f1,f2) (E)

)
and proving that C(f1,f2) (E) is (f1, f2)-evident.

(Part 3) It suffices to show that Bfi

i (E) is closed; the rest follows from the fact that arbitrary 

intersections of closed sets are closed. Take any sequence ti,m → ti , where 
(
ti,m, tj

) ∈ B
fi

i (E)

for some tj , so that πi

(
Ej |ti,m

)≥ fi

(
ti,m
)

for each m. Then, since Ei is closed, ti ∈ Ei , and, by 
the Portmanteau Theorem, we have

πi

(
Ej |ti

)≥ lim supπi

(
Ej |ti,m

)≥ limfi

(
ti,m
)= fi (ti) ,

showing that 
(
ti , tj

) ∈ B
fi

i (E). �
References

Argenziano, R., 2008. Differentiated networks: equilibrium and efficiency. Rand J. Econ. 39, 747–769.
Aumann, R., 1976. Agreeing to disagree. Ann. Stat. 4, 1236–1239.
Carlsson, H., van Damme, E., 1993. Global games and equilibrium selection. Econometrica 61, 989–1018.
Frankel, D., Morris, S., Pauzner, A., 2003. Equilibrium selection in global games with strategic complementarities. 

J. Econ. Theory 108, 1–44.
Heifetz, A., Neeman, Z., 2006. On the generic (im)possibility of full surplus extraction in mechanism design. Economet-

rica 74, 213–233.
Izmalkov, S., Yildiz, M., 2010. Investor sentiments. Am. Econ. J. Microecon. 2, 21–38.
Kajii, A., Morris, S., 1997. The robustness of equilibria to incomplete information. Econometrica 65, 1283–1309.
Mathevet, L., 2010. A contraction principle for finite global games. Econ. Theory 42, 539–563.
Mertens, J., Zamir, S., 1985. Formalization of Bayesian analysis for games with incomplete information. Int. J. Game 

Theory 14, 1–29.
Monderer, D., Samet, D., 1989. Approximating common knowledge with common belief. Games Econ. Behav. 1, 

170–190.
Morris, S., 2014. Coordination, timing and common knowledge. Res. Econ. 68, 306–314.
Morris, S., Shin, H.S., 1998. Unique equilibrium in a model of self-fulfilling currency attacks. Am. Econ. Rev. 88, 

587–597.
Morris, S., Shin, H.S., 2001. Rethinking multiple equilibria in macroeconomics. NBER Macroecon. Annu. 2000, 

139–161.
Morris, S., Shin, H.S., 2003a. Global games: theory and applications. In: Dewatripont, M., Hansen, L., Turnovsky, S. 

(Eds.), Advances in Economics and Econometrics: Proceedings of the Eight World Congress of the Econometric 
Society. Cambridge University Press, Cambridge, pp. 56–114.

Morris, S., Shin, H.S., 2003b. Coordination risk and the price of debt. Eur. Econ. Rev. 48, 133–153.
Morris, S., Shin, H.S., 2005. Heterogeneity and uniqueness in interaction games. In: The Economy as an Evolving 

Complex System, III. Santa Fe Institute.
Morris, S., Shin, H.S., 2007. Common belief foundations in global games. Discussion paper http://www.princeton.edu/

~smorris/pdfs/cbf.pdf.
Morris, S., Shin, H.S., 2012. Contagious adverse selection. Am. Econ. J. Macroecon. 4, 1–21.
Oyama, D., Takahashi, S., 2013. Generalized belief operator and the impact of small probability events on higher order 

beliefs. Discussion paper. University of Tokyo and National University of Singapore.
van Zandt, T., 2010. Interim Bayesian Nash equilibrium on universal type spaces for supermodular games. J. Econ. 

Theory 145, 249–263.
www.manaraa.com

http://refhub.elsevier.com/S0022-0531(16)00041-7/bib617267653038s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib61756D613736s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib636176613933s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib66726D703033s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib66726D703033s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib68656E653036s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib68656E653036s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib697A79693130s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6B616D6F3937s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6174683130s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D657A613835s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D657A613835s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73613839s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73613839s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F72723134s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683938s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683938s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683031s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683031s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683033s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683033s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683033s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F7368303362s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683035s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683035s1
http://www.princeton.edu/~smorris/pdfs/cbf.pdf
http://www.princeton.edu/~smorris/pdfs/cbf.pdf
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6D6F73683132s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6F7974613133s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib6F7974613133s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib76616E7A3130s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib76616E7A3130s1


848 S. Morris et al. / Journal of Economic Theory 163 (2016) 826–848
van Zandt, T., Vives, X., 2007. Monotone equilibria in Bayesian games of strategic complementarities. J. Econ. The-
ory 134, 339–360.

Weinstein, J., Yildiz, M., 2007. A structure theorem for rationalizability with applications to robust predictions of refine-
ments. Econometrica 75, 365–400.
www.manaraa.com

http://refhub.elsevier.com/S0022-0531(16)00041-7/bib766176693037s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib766176693037s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib77657969303762s1
http://refhub.elsevier.com/S0022-0531(16)00041-7/bib77657969303762s1

	Common belief foundations of global games
	1 Introduction
	2 Model
	3 Common-belief characterization of rationalizability
	4 Risk-dominant selection and multiplicity
	5 Proof and a counterexample
	6 Discussion: extensions and relation to the literature
	6.1 Non-uniform rank beliefs
	6.2 Many players
	6.3 Global games literature

	Appendix A Omitted proofs
	References


